Physics 4B
Fall 2011

Name

Lab \qquad
Quiz \#9: EM Oscillations and Alternating Current
Problem 1 (1 point)
An RLC series circuit is driven by a sinusoidal emf with angular frequency ω_{d}. If ω_{d} is increased without changing the amplitude of the emf, the current amplitude increases. This means that:
a) $\omega_{d} L>R$
b) $\omega_{d} L<R$
c) $\omega_{d} L>1 / \omega_{d} C$
(d) $\omega_{d} L<1 / \omega_{d} \mathrm{C}$
e) $\omega_{d} L=1 / \omega_{d} C$
the curcuit is getting closer to resonance ($X_{c}=X_{c}$) when w_{d} is increased so
$\omega_{d} L<1 / \omega_{d c}$

Problem 2 (2 points)
The figure below shows the current i and driving $\operatorname{emf} \varepsilon$ for a series RLC circuit driven at frequency f_{d}. What effect (increase, decrease, or no change) would each of the following changes have on (a) the current amplitude I and (b) the phase angle φ ?

	Effect on I	Effect on φ
Increase L	decrease	increase
Increase R	decrease	decrease
Increase C	decrease	increase
Increase f_{d}	decrease	increase

sunrise i logs ε, cucut is mainly inductiris (ELI)
Problem 3 (2 points) so $X_{c}<X_{c}, \omega_{d}>\omega ; \phi>0$
The current amplitude I versus driving frequency ω_{d} for a series RLC circuit is given in the figure below (Note: the driving angular frequency is given in units of $\mathbf{1 0 0 0} \mathrm{rad} / \mathrm{s}$). The inductance is 175 uH and the emf amplitude is $\varepsilon_{\mathrm{m}}=125 \mathrm{~V}$. What are the values of (a) C and (b) R ?

Note: from the groper, tho resonant angular frequency is $\omega=25 \times 10^{3} \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& w=1 / \sqrt{L C} \rightarrow w^{2}=\frac{1}{\angle C} \rightarrow C \rightarrow 1 / w^{2} L \\
& C=\frac{1}{\left(25 \times 10^{3} \mathrm{rad} / \mathrm{s}\right)^{2}\left(175 \times 10^{6} \mathrm{H}\right)} \rightarrow \begin{aligned}
C & =9.14 \times 10^{-6} \mathrm{~F} \\
& =9.14 \mu \mathrm{~F}
\end{aligned}
\end{aligned}
$$

(b) at resonance $\left(X_{L}=X_{c}\right), Z=R$

$$
I=\varepsilon_{m} / z=\varepsilon_{m} / R \rightarrow R=\varepsilon_{m} / I=\frac{125 \mathrm{~V}}{4.0 \mathrm{~A}}=31.3 \Omega
$$

Problem 4 (2 points)
In an oscillating LC circuit, $\mathrm{L}=30.0 \mathrm{mH}$ and $\mathrm{C}=7.50 \mu \mathrm{~F}$. At time $\mathrm{t}=1.50 \mathrm{~s}$, the current is 9.0 mA and the charge on the capacitor is $3.50 \mu \mathrm{C}$. (a) What is the maximum charge on the capacitor? (b) What is the maximum current?

$$
\begin{array}{ll}
\angle=30.0 \mathrm{mH} & U_{\text {total }}=1 / 2 q^{2} / \mathrm{C}+1 / 2 L i^{2} \\
C=7.50 \mu \mathrm{~F} & =1 / 2 \frac{\left(3.50 \times 10^{-6} \mathrm{C}\right)^{2}}{\left(7.50 \times 10^{-6} \mathrm{~F}\right)}+1 / 2\left(30.0 \times 10^{-3} \mathrm{H}\right)\left(9.0 \times 10^{-3} \mathrm{~A}\right)^{2} \\
i=9.0 \mathrm{~mA} & 2.03 \times 10^{-6} \mathrm{~J} \\
q=3.50 \mu \mathrm{C} & =2
\end{array}
$$

(a)

$$
\begin{aligned}
U_{\text {total }} & =1 / 2 Q^{2} / c \longrightarrow Q=\sqrt{2 U C}=\sqrt{2\left(2.03 \times 10^{-6} \mathrm{~F}\right)\left(7.50 \times 10^{-6} \mathrm{~F}\right)} \\
& =5.52 \mu \mathrm{C}
\end{aligned}
$$

(b) $U_{\text {total }}=1 / 2 L I^{2} \rightarrow I=\sqrt{\frac{2 U}{L}}=\sqrt{\frac{2\left(2.03 \times 10^{-6} \mathrm{~J}\right)}{30.0 \times 10^{-3} \mathrm{H}}} \rightarrow I=11.6 \mathrm{~mA}$ Problem 5 (3 points) In the figure below, let $R=100.0 \Omega, C=25.0 \mu F, \mathrm{~L}=200.0 \mathrm{mH}, f_{d}=60.0 \mathrm{~Hz}$, and $\xi_{m}=30.0 \mathrm{~V}$.
(a) What is the maximum current in the circuit? (b) What are the rms voltages across the resistor, capacitor, and the inductor?

$$
\begin{aligned}
X_{L} & =\omega_{d} L=\left(2 \pi f_{d}\right) L=2 \pi(60.0 \mathrm{~Hz})\left(200.0 \times 10^{-3} \mathrm{H}\right) \\
& =\frac{75.4 \Omega}{1}=\frac{1}{2 \pi(60.0 \mathrm{~Hz})\left(25.0 \times 10^{-6} \mathrm{~F}\right)} \\
X_{C} & =\frac{1}{\omega_{d} C}=\frac{\left.1 \pi f_{d}\right) C}{(206 \Omega} \\
& =106
\end{aligned}
$$

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}=\sqrt{(100.0 \Omega)^{2}+(75.4 \Omega-106 \Omega)^{2}}=104.6 \Omega
$$

a) $I=\varepsilon_{m} / Z=\frac{30.0 \mathrm{~V}}{104.6 \Omega} \rightarrow I=0.287 \mathrm{~A}=287 \mathrm{~mA}$

$$
\begin{aligned}
& \text { b) } V_{R}=I R=(0.287 \mathrm{~A})(100.0 \Omega)=28.7 \Omega \quad V_{\text {rms }}=\frac{V}{\sqrt{2}}=20.3 \Omega \\
& V_{c}=I X_{c}=(0.287 \mathrm{~A})(106 \Omega)=30.4 \Omega \quad V_{c, \text { rms }}=21.5 \Omega \\
& V_{L}=I X_{L}=(0.287 \mathrm{~A})(75.4 \Omega)=21.6 \Omega \quad V_{c, \text { rms }}=15.3 \Omega
\end{aligned}
$$

